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Abstract

Analysis of a circular dual mode filter without any
perturbation in the resonator itself is given, using a
branch line model which is generally applicable to all
types of circular resonators. The extended theory for
the structure with shunt susceptances to the external
circuit is also verified by an experiment on a coplanar
ring resonator.

1.Introduction

Circular resonators are useful to reduce the
dimension of BPF's due to a repetitive use of the
space[1][2]. We have experimentally shown that their
rotated excitation induces the mutual coupling of the
degenerate modes  without any internal perturbation
in the resonator[3]. Thus one can fabricate a two-stage
BPF of very simple structure with attenuation poles.
This article introduces theé branch line model of the

resonator and derives analytical expressions for the
coupling constant k&, external Q, and the
frequency  of  attenuation poles. A  shunt

susceptance 1s also successfully added to the external
circuits which controls & and Qe independent of the
attenuation poles.

2. Coupling constant and external Q
Circular  resonators can be analyzed by the

branch line model shown in Fig.1, including even

a cylindrical resonator such as hollow
waveguide  configuration by characterizing  the
propagation constant [ and characteristic
impedance Z, of the equivalent azimuthally -

propagating transmission line. The coupling constant 1s
easily  obtained by insertion of the electric or
magnetic wall at the symmetry plane and by the
difference of each resonant frequency. The resonance
condition for the even mode, for example, is given by

tan S(L - ¢)+tan Bt +b =0, (1)
where
p=Le b b, =Z7,B
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and Zo is the characteristic impedance of the

external circuit. The shift of resonant frequency
from the non-perturbed state becomes
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The coupling constant is obtained as
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and-shown in Fig.2. The shift of center frequency of the
filter is
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It should be noted that the coupling constant
becomes maximum at #=0"  or 180° , where &
gives the angle between two external circuits, and it is
not zero at ¢=90" as is usually supposed. It is
because the second order effect of 4" is not negligible.
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The external Q of each orthogonal mode is
obtained considering the equivalent circuit with the
external circuit as shown in Fig.3.
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The matching condition for a Wagner filter is given by
the intersection of k¥ and Q,' in Fig.4 and the filter
bandwidth is readily calculated as shown in Fig.5. It
indicates that the bandwidth is uniquely determined by
the excitation angle & as long as the matching
condition is to be satisfied . The experimental result
1s also plotted in the same figure, showing a good
agreement with the theory.

0

e

Q)

Symmetry
| P lane

7
* Symmetry
plane

(a) Circular ring resonator  (b) Branch line model

Fig.1. A model for rotated excitation
of a circular resonator
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Fig.2. Coupling constant k versus the angle &
between two external circuits
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Fig.4. Matching condition of a 2-stage Wagner filter
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Fig.5. Relative bandwidth versus 6

3.Attenuation poles

Tranemission  from port 1 to 2 in a 2-port
circuit dose not occur when the admittance
matrix component Y, is equal to zero. Therefore the
condition for attenuation poles is given by putting
the sum of 1,,'s for each path to zero as

sin2f3¢ +sin2(L- €)= 0, (6)
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which gives the following two frequencies

90
T 180-6

fx = f() > fz fo (H: in degree) (7)

They are drawn in Fig.6 as a function of the angle
between two external circuits.

Since the center frequency of the BPF shifts
downward from f, according to eq.(4) for capacitive
excitation, the attenuation poles are located at each side
of the passband for & <90° , and the upper side
for & =90" . Circles in TFig6 are experimental

results for some &'s, showing quite good agreement

with the  theory. But Fig.5 and 6 tell us that the
angle ¢ determines the bandwidth and the
location of the attenuation poles at the same time.
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Fig.6. Frequency of attenuation poles for
rotated excitation
4. Addition of shunt susceptance
In order to secure a comparative
independence of the  bandwidth  from the

attenuation pole frequency, one can add a shunt
suscepance to the external circuit as shown in Fig.7. It
enables us to control the external Q and the coupling
constant & by the combination of B; and B,. We will
take an example of &=90" which was considered
most difficult configuration to realize a BPF.

The conductance and  susceptance of the
external circuit shown in Fig.7 is easily calculated
as

Y b?

n

~ by(b +b,)+1
Gy (b+b) +1

o (b1+b2)2 +1

+jb,  (8)

b =BZ, , b=B7,

>

and used to modify the Q. and k in egs. (5) and (3),
respectively. Thus the matching condition and the
relative bandwidth  are obtained as shown in Fig.8. We
have simulated the response of the new structure along
the solid line in Fig.8(a), but could not find a good
matching somehow. Thus Fig.9 shows the simulated
results for combinations indicated by crosses in
Fig.8(a) based on the branch line model. The
experimental confirmation is shown in Fig.10 for the
coplanar structure corresponding to PI. One can
see a close agreement with the simulation including the
attenuation . pole which is expected to be only
one by eq.(7). The simulated and experimental
relative bandwidth is plotted in Fig.8(b).
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Fig.7. A shunt susceptance excitation
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(a) Matching condition
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Fig.8. Condition for dual-mode BPF
with shunt suscepance ( #=90" )
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Fig.9. Simulation of BPF with
shunt susceptance ( #=90" )
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Fig.10. Characteristics of BPF with shunt
susceptance ( #=90" | h;=1.63, b,=1.63)

5.Conclusion

We have generally analyzed a rotated excitation of
circular resonator filters with the branch line model
and found simple equations to describe the response.
The newly proposed shunt susceptance has
successfully extended the room for design.
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