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Abstract

Analysis of a circular dual mode filter without any

perturbation in the resonator itself is given, using a
branch line model which is generally applicable to all

(ypes of circular resonators. The extended theory for

the structure with shunt susceptances to the external

circuit is also verified by an experiment on a coplanar

ring resonator.

l. Introduction

Circular resonators are usefld to reduce the
dimension of BPF’s due to a repetitive use of the

space[ 1] [2]. We have experimentally shown that their

rotated excitation induces the mutual coupling of the

degenerate modes without any internal perturbation

in the resonator[3]. Thus one can fabricate a two-stage

BPF of very simple structure with attenuation poles.

This article introduces the branch line model of the

resonator and derives analytical expressions for the

coupling constant k, external Q, and the
frequency of attenuation poles. A Shtmt

susceptance is also sLlccessfully added to the external

circuits which controls k and Qe independent of the

attenuation poles.

2. Coupling constant and external Q

Circular resonators can be analyzed by the

branch line model shown in Fig. 1, including even

a cylindrical resonator such as hollow

waveguide configuration by characterizing the

propagation constant 6’ and characteristic

impedance ZJ of the equivalent azimuthally -

propagating transmission line. Tile couplk~ constant is

easily obtained by insertion of the electric or

magnetic wall at the symmetry plane and by the

difference of each resonant frequency. The resonance

condition for the even mode, for example, is given by

tan@(L– /)+tan~/+b’=O, (1)

where

bt=~ b.
— , b, = ZOBc >

Z. 1+ bc2

and Zo is the characteristic impedance of the

external circuit. The shift of resonant frequency
from the non-perturbed state becomes

The coupling constant is obtained as

~=21.fo-f’l I&()-fq
f’) +f’ =~ A/ -@f”

2

(2)

(3)

and shown in Fig.2. The shift of center frequency of the

filter is

*f, _ f“ +fe f._ b’ f,

2 2X
(4)

It shoLdd be noted that the cowpling constant

becomes maximum at f7=0° or 180° , where @

gives the angle between two external circuits, and it is

not zero at 8=900 as is usually supposed. It is

because the second order effect of b‘ is not negligible.
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The external Q of each orthogonal

obtained considering the equivalent circuit

external circuit as shown in Fig.3.

2---

mode is

with the

(5)

The matching condition for a Wagner filter is given by

the intersection of k and ~g-l in Fig.4 and the filter

bandwidth is readily calculated as shown in Fig.5. It

indicates that the bandwidth is uniquely determined by

the excitation angle @ as long as the matching

condition is to be satisfied The experimental result

is also plotted in the same figure, showing a good

agq-cement with the theory.
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(a) Circular ring resonator (b) Branch line model

Fig. 1. A model for rotated excitation

of a circular resonator
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Fig.2, Coupling constant k versus the angle @

between two external circuits
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Fig.3. Circuit model for calculation of external Q
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Fig.4. Matching condition of a 2-stage Wa~mer filter
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Fig.5. Relative bandwidth versus 0

3.Attenuation poles

Transmission from port 1 to 2 A a 2-port

circuit dose not occur when the admittance
matrix component Y21 is equal to zero. Therefore the

condition for attenuation poles is given by putting

the sum of Y21’s for each path to zero as

sin 2@+ sin 2fl(~ – 1) = O, (6)
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which gives the following two frequencies

f, =.fo, f2 ‘*f. (d in degree) (7)

They are drawn in Fig.6 as a function of the angle

between two external circuits.

Since the center frequency of the BPF shifts

downward from,~ according to eq.(4) for capacitive

excitation, the attenuation poles are located at each side

of the passband for @ S 90° , and the upper side

for O >90° Circles in Fig.6 are experimental

results for some 8 ‘s, showing quite good agyeernent

with the theorv. But FiK.5 and 6 tell us that the

angle O determines the bandwidth and the

location of the attenuation poles at the same time.
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Fig.6. Frequency of attenuation

rotated excitation

4. Addition of shunt susceptance

111 order to secure

poles for

a comparative

independence of the bandwidth from the

attenuation pole frequency, one can add a shunt

suscepance to the external circuit as shown in Fig.7. It

enables LIS to control the external Q and the coupling

constant k by the combination of BI and B2. We will

take an example of L9=90° which was considered

most difficult configuration to realize a BPF,

The conductance and susceptance of the

external circuit shown in Fig.7 is easily calculated

as

Y b: b,(b, +b,)+l
In _——

‘Jbl (~, +b,)’ +1
=g+jb,

Go (b, + b2)2 +1
(8)

b, = BIZO , b2= ~,zo

and used to modi~ the Q. and k in eqs. (5) and (3),

respective] y. Thus the matching condition and the

relative bandwidth are obtained as shown in Fig. 8. We

have simulated the response of the new structure along

the solid line in Fig.8(a), but could not find a good

matching somehow. Thus Fig.9 shows the simulated

results for combinations indicated by crosses in

Fig.8(a) based on the branch line model. The

experimental confirmation is shown in Fig. 10 for the

coplanar structure corresponding to PI. One can

see a close agreement with the simulation including the

attenuation pole which is expected to be only

one by eq.(7). The simulated and experimental

relative bandwidth is plotted in Fig.8(b).

Fig.7. A shunt susceptance excitation
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0-7803-4603-6/97/$5.00 (c) IEEE



0“’E3=bB=l
x /

n~ / ‘
0.1 9 /

T * /

/
x/

/

0,05 /
/

/
x Simulation

● Experiment -
/

/ I I
I 1 1 1 1 [

o 1 2

Normalized Series Susceptance b,

(b) Relative bandwidth versus b]

Fig.8. Condition for dual-mode BPF

with shunt suscepance ( 0=90° )
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Fig.9, Simulation of BPF with

shunt susceptance ( @=90° )
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5. Conclusion

We have generally analyzed a rotated excitation of

circular resonator filters with the branch line model

and found simple equations to describe the response.

The newly proposed shunt susceptance has

successfully extended the room for design.
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Fig. 10. Characteristics of BPF with shunt

susceptance ( 8=90° , b]=] .63, bz=l .63)

0-7803-4603-6/97/$5.00 (c) IEEE


